Post-exodontic Photobiomodulation with Different Levels of Energy on Alveolar Bone Repair in Rats
Keywords:
alveolar bone, phototherapy, laser, wound healing.Abstract
Introduction: The use of photobiostimulation in oral surgery as an accelerator of tissue healing has increased worldwide; however, scientific evidence is insufficient regarding the minimum energy needed to encourage healing of the dental alveolus.
Objective: To determine the effect of photobiomodulation with different energy values on alveolar repair after tooth extraction in albino rats.
Methods: Thirty-six female albino rats were randomly assigned to four groups: three with laser application at 2, 4 and 6 Joules of energy and one without laser application. Gallium-aluminum arsenide infrared lasers at 808 nm and 100 milliwatts were applied pointwise, perpendicularly and uniquely to the tooth socket. The maxillary bone was dissected and the samples were stained with hematoxylin eosin for subsequent analysis by osteoblast cell count at the level of the alveolar middle third.
Results: Seven days after exposure, osteoblast formation was not observed in the control group, but was observed in the experimental groups with energy levels of 2, 4 and 6 Joules, which showed similar osteoblast cell formation. Only the 4 Joules group showed a greater number of osteoblasts than the control group without irradiation (p = 0.008). At 14 days, osteoblast formation was similar between groups, with no significant differences (p > 0.05).
Conclusions: Photobiomodulation had a positive effect on alveolar bone healing in the different energy parameters evaluated. The use of lower energy is equally beneficial, modulates cellular response, induces osteoblastic proliferation and reduces bone repair time.
Downloads
References
Ribeiro LNS, de Figueiredo FAT, da Silva Mira PC, Arnez MFM, Matsumoto MAN, de Menezes LM, et al. Low-level laser therapy (LLLT) improves alveolar bone healing in rats. Lasers Med Sci. 2022;37(2):961-9. DOI: https://doi.org/10.1007/s10103-021-03340-y
Križaj Dumić A, Pajk F, Olivi G. The effect of post‐extraction socket preservation laser treatment on bone density 4 months after extraction: Randomized controlled trial. Clin Implant Dent Relat Res. 2021;23(3):309-16. DOI: https://doi.org/10.1111/cid.12991.
Astuti SD, Sulistyo A, Setiawatie EM, Khasanah M, Purnobasuki H, Arifianto D, et al. An in-vivo study of photobiomodulation using 403 nm and 649 nm diode lasers for molar tooth extraction wound healing in wistar rats. Odontology. 2022;110(2):240-53. DOI: https://doi.org/10.1007/s10266-021-00653-w.
Amaroli A, Colombo E, Zekiy A, Aicardi S, Benedicenti S, De Angelis N. Interaction between Laser Light and Osteoblasts: Photobiomodulation as a Trend in the Management of Socket Bone Preservation—A Review. Biology. 2020;9(11):409. DOI: https://doi.org/10.3390/biology9110409.
Canellas JVDS, Medeiros PJD, Figueredo CMDS, Fischer RG, Ritto FG. Platelet-rich fibrin in oral surgical procedures: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2019;48(3):395-414. DOI: https://doi.org/10.1016/j.ijom.2018.07.007
Daigo Y, Daigo E, Hasegawa A, Fukuoka H, Ishikawa M, Takahashi K. Utility of High-Intensity Laser Therapy Combined with Photobiomodulation Therapy for Socket Preservation After Tooth Extraction. Photobiomodulation Photomed Laser Surg. 2020;38(2):75-83. DOI: https://doi.org/10.1089/photob.2019.4652.
Dalirsani Z, Ghazi N, Delavarian Z, Pakfetrat A, Esmaily H, Davaji M, et al. Effects of diode low-level laser therapy on healing of tooth extraction sockets: a histopathological study in diabetic rats. Lasers Med Sci. 2021;36(7):1527-34. DOI: https://doi.org/10.1007/s10103-021-03270-9.
De Miranda J, Choi I, Moreira M, Martins M, Cortes A, Yoshimoto M. Histologic Evaluation of Early Bone Regeneration Treated with Simvastatin Associated with Low-Level Laser Therapy. Int J Oral Maxillofac Implants. 2019;34(3):658-64. DOI: https://doi.org/10.11607/jomi.6990.
Çırak E, Özyurt A, Peker T, Ömeroğlu S, Güngör MN. Comparative evaluation of various low-level laser therapies on bone healing following tooth extraction: An experimental animal study. J Cranio-Maxillofac Surg. 2018;46(7):1147-52. DOI: https://doi.org/10.1016/j.jcms.2018.05.012.
Coskun ME, Coskun KA, Tutar Y. Determination of Optimum Operation Parameters for Low-Intensity Pulsed Ultrasound and Low-Level Laser Based Treatment to Induce Proliferation of Osteoblast and Fibroblast Cells. Photomed Laser Surg. 2018;36(5):246-52. DOI: https://doi.org/10.1089/pho.2017.4354.
Llapapasca Cruz CP, de la Torre F, Jiménez Sánchez SM, Mallma Medina AS, Ruiz Ramírez E, Valdez Jurado FR. Efecto del láser terapéutico infrarrojo en la reparación ósea post-exodoncia en ratas albinas. Rev Estomatológica Hered. 2017;27(2):101-10. DOI: https://doi.org/10.20453/reh.v27i2.3140.
Directiva 2010/63/UE del Parlamento Europeo y del Consejo, de 22 de septiembre de 2010, relativa a la protección de los animales utilizados para fines científicos Texto pertinente a efectos del EEE. Disponible en: https://www.boe.es/doue/2010/276/L00033-00079.pdf
Caballos AP. Ética de la experimentación animal. Directrices legales y éticas contemporáneas. Cuad Bioét. 2005 [acceso 25/09/2023];16(3):e23863773. Disponible en: https://www.redalyc.org/pdf/875/87512622006.pdf
Berni M, Brancato AM, Torriani C, Bina V, Annunziata S, Cornella E, et al. The Role of Low-Level Laser Therapy in Bone Healing: Systematic Review. Int J Mol Sci. 2023;24(8):7094. DOI: https://doi.org/10.3390/ijms24087094.
Deana AM, de Souza AM, Teixeira VP, Mesquita-Ferrari RA, Bussadori SK, Fernandes KPS. The impact of photobiomodulation on osteoblast-like cell: a review. Lasers Med Sci. 2018;33(5):1147-58. DOI: https://doi.org/10.1007/s10103-018-2486-9
Bourouni I, Kyriakidou K, Fourmousis I, Vrotsos IA, Karoussis IK. Low Level Laser Therapy With an 810-nm Diode Laser Affects the Proliferation and Differentiation of Premature Osteoblasts and Human Gingival Fibroblasts In Vitro. J Lasers Med Sci. 2021;12:e33. DOI: https://doi.org/10.34172/jlms.2021.33.
Santos MA, Silva DN, Rovaris K, Sousa FB, Dantas EL, Loureiro LA, et al. Optimal Parameters of Laser Therapy to Improve Critical Calvarial Defects. Front Physiol. 2022;13:841146. DOI: https://doi.org/10.3389/fphys.2022.841146.
Dörtbudak O, Haas R, Mailath-Pokorny G. Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res. 2000;11(6):540-5. DOI: https://doi.org/10.1034/j.1600-0501.2000.011006540.x
Lazăr L, Manu DR, Dako T, Mârțu MA, Suciu M, Ormenișan A, et al. Effects of Laser Application on Alveolar Bone Mesenchymal Stem Cells and Osteoblasts: An In Vitro Study. Diagnostics. 2022;12(10):2358. DOI: https://doi.org/10.3390/diagnostics12102358.
Crous A, Abrahamse H. The Signalling Effects of Photobiomodulation on Osteoblast Proliferation, Maturation and Differentiation: A Review. Stem Cell Rev Rep. 2021;17(5):1570-89. DOI: https://doi.org/10.1007/s12015-021-10142-w.
Huang YY, Sharma SK, Carroll J, Hamblin MR. Biphasic Dose Response in Low Level Light Therapy – An Update. Dose-Response. 2011;9(4):602-18. DOI: https://doi.org/10.2203/dose-response.11-009.Hamblin.
de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron Publ IEEE Lasers Electro-Opt Soc. 2016;22(3):7000417. DOI: https://doi.org/10.1109/JSTQE.2016.2561201.
Hawkins D, Abrahamse H. Effect of Multiple Exposures of Low-Level Laser Therapy on the Cellular Responses of Wounded Human Skin Fibroblasts. Photomed Laser Surg. 2006;24(6):705-14. DOI: https://doi.org/10.1089/pho.2006.24.705.
Published
How to Cite
Issue
Section
License
Authors retain all rights to their works, which they can reproduce and distribute as long as they cite the primary source of publication.
The Rev Cubana Estomatol is subject to the Creative Commons Attribution-Non-Commercial 4.0 International License (CC BY-NC 4.0) and follows the publication model of SciELO Publishing Schema (SciELO PS) for publication in XML format.
You are free to:
- Share — copy and redistribute the material in any medium or format.
- Adapt — remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.